题目内容

20.如图,正方体ABCD-A1B1C1D1中,E,F分别为AB与BB1的中点.
(Ⅰ)求证:EF⊥平面A1D1B;
(Ⅱ)求二面角F-DE-C大小.

分析 (I)要证EF⊥平面A1D1B,只需证A1D1⊥EF,A1B⊥EF
(II)要求二面角F-DE-C大小的正切值,关键是找出二面角的平面角.延长DE、CB交于N,过B作BM⊥EN交于M,连FM,则∠FMB为二面角F-DE-C的平面角,故可求.

解答 证明:(I)∵A1D1⊥平面A1B1BA,EF?平面A1B1BA,
∴A1D1⊥EF
∵A1B⊥AB1,EF∥AB1
∴A1B⊥EF
∴EF⊥平面A1D1B;
解:(II)延长DE、CB交于N,∵E为AB中点,∴△DAE≌△NBE
过B作BM⊥EN交于M,连FM,
∵FB⊥平面ABCD
∴FM⊥DN,∴∠FMB为二面角F-DE-C的平面
设AB=a,则BM=$\frac{BE•BN}{EN}$=$\frac{a}{\sqrt{5}}$    又BF=$\frac{a}{2}$,
∴tan∠FMB=$\frac{FB}{BM}$=$\frac{\sqrt{5}}{2}$,
即二面角F-DE-C大小为:arctan$\frac{\sqrt{5}}{2}$.

点评 本题以正方体为载体,考查线面垂直,考查面面角,关键是作出二面角的平面角.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网