题目内容
18.分析 由中位线定理可知EF∥A1C1,故A1C1∥平面ACEF,由AB$\stackrel{∥}{=}$FB1得四边形ABB1F是平行四边形,故AF∥BB1,所以BB1∥平面ACEF.
解答 解:∵点E、F分别是棱B1C1、A1B1的中点,
∴EF∥A1C1,又EF?平面ACEF,A1C1?平面ACEF,
∴A1C1∥平面ACEF.
∵AB∥A1B1,A1B1=2AB,FB1=$\frac{1}{2}$A1B1,
∴AB$\stackrel{∥}{=}$FB1,
∴四边形ABB1F是平行四边形,
∴AF∥BB1,又AF?平面ACEF,BB1?平面ACEF,
∴BB1∥平面ACEF.
故答案为:A1C1,BB1.
点评 本题考查了平面平行的判定,属于基础题.
练习册系列答案
相关题目
9.(普通中学做)已知双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)以及双曲线C2:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线将第一象限三等分,则C1,C2的离心率之积为( )
| A. | $\frac{4\sqrt{3}}{3}$ | B. | $\frac{4}{3}$或4 | C. | $\frac{4}{3}$ | D. | 4 |
10.已知F1(-1,0),F2(1,0)是椭圆C1与双曲线C2共同的焦点,椭圆的一个短轴端点为B,直线F1B与双曲线的一条渐近线平行,椭圆C1与双曲线C2的离心率分别为e1,e2,则e1+e2取值范围为( )
| A. | [2,+∞) | B. | [4,+∞) | C. | (4,+∞) | D. | (2,+∞) |
7.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一个焦点恰为抛物线y2=8x的焦点,且离心率为2,则该双曲线的标准方程为( )
| A. | ${x^2}-\frac{y^2}{3}=1$ | B. | $\frac{x^2}{4}-\frac{y^2}{12}=1$ | C. | $\frac{x^2}{3}-{y^2}=1$ | D. | $\frac{x^2}{12}-\frac{y^2}{4}=1$ |