题目内容

正四面体ABCD中,E、F分别是BC、AD的中点,那么EF与平面BCD所成的角的大小为
arcsin
3
3
arcsin
3
3
分析:欲求EF与平面BCD所成的角的大小,须先找到它的平面角,根据正四面体的性质,可知,若过F向平面BCD作垂线,垂足必在ED上,ED为EF在平面BCD上的射影,就可得到∠EFD为所求EF与平面BCD所成的角,再放入直角三角形EFD中来求角即可.
解答:解:连接DE,AE
∵ABCD为正四面体,BC⊥DE,BC⊥AE,AE=DE
∴BC⊥平面AED,平面AED⊥平面BCD
∴过F向平面BCD作垂线,则垂足必落在DE上,
∠FED为所求EF与平面BCD所成的角,
∵AE=DE,F为AD中点,∴EF⊥AD,
∴在直角三角形EFD中,设AD=2a,则FD=a,DE=
3
a,
∴sin∠EFD=
FD
DE
=
a
3a
=
3
3

∴EF与平面BCD所成的角的大小为arcsin
3
3

故答案为arcsin
3
3
点评:本题主要考查了正四面体的性质在求线面角中的应用,综合考查了学生的空间想象力,转化能力,计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网