题目内容

11.数列{an}的前n项和为Sn,2Sn+an=n2+2n+2,n∈N*
(1)求数列{an}的通项公式.
(2)求数列{n•(an-n)}的前n项和Tn

分析 (1)由2Sn+an=n2+2n+2,n∈N*,可得2a1+a1=1+2+2,解得a1.当n≥2时,可得:2an+an-an-1=2n+1,变形为an-n=$\frac{1}{3}[{a}_{n-1}-(n-1)]$,再利用等比数列的通项公式即可得出.
(2)利用“错位相减法”与等比数列的前n项和公式即可得出.

解答 解:(1)∵2Sn+an=n2+2n+2,n∈N*,∴2a1+a1=1+2+2,解得a1=$\frac{5}{3}$.
当n≥2时,2Sn-1+an-1=(n-1)2+2(n-1)+2,可得:2an+an-an-1=2n+1,
化为an-n=$\frac{1}{3}[{a}_{n-1}-(n-1)]$,
∴数列{an-n}是等比数列,首项为$\frac{2}{3}$,公比为$\frac{1}{3}$.
∴an-n=$\frac{2}{3}×(\frac{1}{3})^{n-1}$,
可得an=n+2×$(\frac{1}{3})^{n}$.
(2)n•(an-n)=$2n×(\frac{1}{3})^{n}$.
∴数列{n•(an-n)}的前n项和Tn=$2[1×\frac{1}{3}+2×(\frac{1}{3})^{2}+…+n×(\frac{1}{3})^{n}]$,
$\frac{1}{3}{T}_{n}$=2$[(\frac{1}{3})^{2}+2×(\frac{1}{3})^{3}+…+n×(\frac{1}{3})^{n+1}]$,
∴$\frac{2}{3}{T}_{n}$=$2[\frac{1}{3}+(\frac{1}{3})^{2}+…+(\frac{1}{3})^{n}-n×(\frac{1}{3})^{n+1}]$,
∴Tn=1+$\frac{1}{3}$+$(\frac{1}{3})^{2}$+…+$(\frac{1}{3})^{n-1}$-n×$(\frac{1}{3})^{n}$=$\frac{1-(\frac{1}{3})^{n}}{1-\frac{1}{3}}$-n×$(\frac{1}{3})^{n}$=$\frac{3}{2}$-$(n+\frac{3}{2})$×$(\frac{1}{3})^{n}$.

点评 本题考查了“错位相减法”、等比数列的通项公式及其前n项和公式、递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网