题目内容
设a、b、c为正数,且a+b+c=1,求证:(a+
证明:左边=
(12+12+12)[(a+
)2+(b+
)2+(c+
)2]≥
[1·(a+
)+1·(b+
)+1·(c+
)]2=
[1+(
+
+
)]2=
[1+(a+b+c)(
+
+
)]2≥
[1+(
)2]2=
.
练习册系列答案
相关题目
题目内容
设a、b、c为正数,且a+b+c=1,求证:(a+
证明:左边=
(12+12+12)[(a+
)2+(b+
)2+(c+
)2]≥
[1·(a+
)+1·(b+
)+1·(c+
)]2=
[1+(
+
+
)]2=
[1+(a+b+c)(
+
+
)]2≥
[1+(
)2]2=
.