题目内容
(理)(1)设x、y是不全为零的实数,试比较2x2+y2与x2+xy的大小;(2)设a,b,c为正数,且a2+b2+c2=1,求证:
| 1 |
| a2 |
| 1 |
| b2 |
| 1 |
| c2 |
| 2(a3+b3+c3) |
| abc |
分析:(1)解法1:利用作差法;解法2:利用分类讨论思想,分xy<0与xy>0讨论即可证得结论;
(2)利用作差法,通过通分、分组、配方等一系列转化,即可证得结论.
(2)利用作差法,通过通分、分组、配方等一系列转化,即可证得结论.
解答:证明:(1)证法1:∵x、y是不全为零的实数,
∴2x2+y2-(x2+xy)
=x2+y2-xy
=(x-
y)2+
y2>0,
∴2x2+y2>x2+xy.
证法2:当xy<0时,x2+xy<2x2+y2;
当xy>0时,作差:x2+y2-xy≥2xy-xy=xy>0;
又因为x、y是不全为零的实数,
∴当xy=0时,2x2+y2>x2+xy.
综上,2x2+y2>x2+xy.
(2)证明:∵
+
+
-
-3
=
+
+
-
-3
=a2(
+
)+b2(
+
)+c2(
+
)-2(
+
+
)
=a2(
-
)2+b2(
-
)2+c2(
-
)2≥0(当且仅当a=b=c时,取得等号),
∴
+
+
-
≥3.
∴2x2+y2-(x2+xy)
=x2+y2-xy
=(x-
| 1 |
| 2 |
| 3 |
| 4 |
∴2x2+y2>x2+xy.
证法2:当xy<0时,x2+xy<2x2+y2;
当xy>0时,作差:x2+y2-xy≥2xy-xy=xy>0;
又因为x、y是不全为零的实数,
∴当xy=0时,2x2+y2>x2+xy.
综上,2x2+y2>x2+xy.
(2)证明:∵
| 1 |
| a2 |
| 1 |
| b2 |
| 1 |
| c2 |
| 2(a3+b3+c3) |
| abc |
=
| a2+b2+c2 |
| a2 |
| a2+b2+c2 |
| b2 |
| a2+b2+c2 |
| c2 |
| 2(a3+b3+c3) |
| abc |
=a2(
| 1 |
| b2 |
| 1 |
| c2 |
| 1 |
| a2 |
| 1 |
| c2 |
| 1 |
| a2 |
| 1 |
| b2 |
| a2 |
| bc |
| b2 |
| ac |
| c2 |
| ab |
=a2(
| 1 |
| b |
| 1 |
| c |
| 1 |
| c |
| 1 |
| a |
| 1 |
| a |
| 1 |
| b |
∴
| 1 |
| a2 |
| 1 |
| b2 |
| 1 |
| c2 |
| 2(a3+b3+c3) |
| abc |
点评:本题考查不等式的证明,着重考查作差法,考查通分、配方、分类讨论等方法,运用转化思想,推理证明,属于难题.
练习册系列答案
相关题目