题目内容
在数列{an}中,a1=1,an+1=an2+4an+2,n∈N*.
(I)设bn=log3(an+2),证明数列{bn}是等比数列;
(II)求数列{an}的通项公式;
(III)设cn=
-
+
,求数列{cn}的前n项和Tn.
(I)设bn=log3(an+2),证明数列{bn}是等比数列;
(II)求数列{an}的通项公式;
(III)设cn=
| 4 |
| an-2 |
| 1 |
| an |
| 1 |
| an+4 |
证明:(I)由a1=1,an+1=an2+4an+2
得an+1+2=(an+2)2
∴log3(an+1+2)=2(log3an+2)(3分)
∵bn=log3(an+2),
∴b1=1,bn+1=2bn(5分)
(II)由(I)可得bn=2n-1
即log3(an+2)=2n-1
∴an=32n-1-2(8分)
(III)∵an+1=an2+4an+2,
∴an+1-2=an2+4an
∵cn=
-
+
=
-(
-
)
=
-
=
-
(10分)
∴Tn=c1+c2+…+cn=
-
+…+
-
(10分)
=
-
=-4-
(12分)
得an+1+2=(an+2)2
∴log3(an+1+2)=2(log3an+2)(3分)
∵bn=log3(an+2),
∴b1=1,bn+1=2bn(5分)
(II)由(I)可得bn=2n-1
即log3(an+2)=2n-1
∴an=32n-1-2(8分)
(III)∵an+1=an2+4an+2,
∴an+1-2=an2+4an
∵cn=
| 4 |
| an-2 |
| 1 |
| an |
| 1 |
| an+4 |
| 4 |
| an-2 |
| 1 |
| an |
| 1 |
| 4+an |
=
| 4 |
| an-2 |
| 4 |
| an(an+4) |
| 4 |
| an-2 |
| 4 |
| an+1-2 |
∴Tn=c1+c2+…+cn=
| 4 |
| a1-2 |
| 4 |
| a2-1 |
| 4 |
| an-2 |
| 4 |
| an+1-2 |
=
| 4 |
| a1-2 |
| 4 |
| an+1-2 |
| 4 |
| 32n-4 |
练习册系列答案
相关题目