题目内容

【题目】数学家默拉在1765年提出定理,三角形的外心,重心,垂心(外心是三角形三条边的垂直平分线的交点重心是三角形三条中线的交点,垂心是三角形三条高的交点)依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线,已知ABC的顶点,则ABC的欧拉线方程为____________________

【答案】

【解析】

因为,所以外心,重心,垂心都位于线段的垂直平分线上,由两直线垂直斜率的关系以及两点的斜率公式得出线段的垂直平分线的斜率,由中点坐标公式得出的中点坐标,最后由点斜式写出方程.

因为,所以外心,重心,垂心都位于线段的垂直平分线上

设线段的垂直平分线的斜率为,则

又因为的中点坐标为

所以△ABC的欧拉线方程为,即

故答案为:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网