题目内容

10.在△ABC中,若$\overrightarrow{AB}$$•\overrightarrow{AC}$=7,|$\overrightarrow{AB}$$-\overrightarrow{AC}$|=6,则△ABC的面积的最大值为12.

分析 设A、B、C所对边分别为a,b,c,由$\overrightarrow{AB}$$•\overrightarrow{AC}$=7,|$\overrightarrow{AB}$$-\overrightarrow{AC}$|=6,得bccosA=7,a=6①,由余弦定理可得b2+c2-2bccosA=36②,联立①②可得b2+c2=50,由不等式可得bc≤25,即可求出△ABC面积的最大值.

解答 解:设A、B、C所对边分别为a,b,c,由$\overrightarrow{AB}$$•\overrightarrow{AC}$=7,|$\overrightarrow{AB}$$-\overrightarrow{AC}$|=6,得bccosA=7,a=6①,
S△ABC=$\frac{1}{2}$bcsinA=$\frac{1}{2}$bc$\sqrt{1-co{s}^{2}A}$=$\frac{1}{2}bc\sqrt{1-\frac{49}{{b}^{2}{c}^{2}}}=\frac{1}{2}\sqrt{{b}^{2}{c}^{2}-49}$.
由余弦定理可得b2+c2-2bccosA=36②,
由①②消掉cosA得b2+c2=50,所以b2+c2≥2bc,
所以bc≤25,当且仅当b=c=5时取等号,
所以S△ABC=$\frac{1}{2}\sqrt{(bc)^{2}-49}$≤12,
故△ABC的面积的最大值为12,
故答案为:12.

点评 本题考查平面向量数量积的运算、三角形面积公式不等式求最值等知识,综合性较强,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网