题目内容

7.数列{an}中,a1=$\frac{1}{2}$,a2=$\frac{2}{5}$,n>1时,$\frac{1}{{a}_{n-1}}$+$\frac{1}{{a}_{n+1}}$=$\frac{2}{{a}_{n}}$,则an等于$\frac{2}{n+3}$.

分析 根据条件构造等差数列$\{\frac{1}{{a}_{n}}\}$,利用等差数列的通项公式即可得到结论.

解答 解:∵n>1时,$\frac{1}{{a}_{n-1}}$+$\frac{1}{{a}_{n+1}}$=$\frac{2}{{a}_{n}}$,
∴数列$\{\frac{1}{{a}_{n}}\}$是等差数列,首项为$\frac{1}{{a}_{1}}=2$,公差d=$\frac{1}{{a}_{2}}-\frac{1}{{a}_{1}}=\frac{5}{2}-2=\frac{1}{2}$,
则$\frac{1}{{a}_{n}}$=2+$\frac{1}{2}$(n-1)=$\frac{n+3}{2}$,
即an=$\frac{2}{n+3}$,
故答案为:$\frac{2}{n+3}$

点评 本题主要考查数列的通项公式的求解,根据条件构造等差数列是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网