ÌâÄ¿ÄÚÈÝ
20£®¶ÔÓÚÊýÁÐ{an}£¬³Æ$P£¨{a_k}£©=\frac{1}{k-1}£¨|{{a_1}-{a_2}}|+|{{a_2}-{a_3}}|+¡+|{{a_{k-1}}-{a_k}}|£©$£¨ÆäÖÐk¡Ý2£¬k¡ÊN£©ÎªÊýÁÐ{an}µÄǰkÏî¡°²¨¶¯¾ùÖµ¡±£®Èô¶ÔÈÎÒâµÄk¡Ý2£¬k¡ÊN£¬¶¼ÓÐP£¨ak+1£©£¼P£¨ak£©£¬Ôò³ÆÊýÁÐ{an}Ϊ¡°Ç÷ÎÈÊýÁС±£®£¨1£©ÈôÊýÁÐ1£¬x£¬2Ϊ¡°Ç÷ÎÈÊýÁС±£¬ÇóxµÄȡֵ·¶Î§£»
£¨2£©Èô¸÷Ïî¾ùΪÕýÊýµÄµÈ±ÈÊýÁÐ{bn}µÄ¹«±Èq¡Ê£¨0£¬1£©£¬ÇóÖ¤£º{bn}ÊÇ¡°Ç÷ÎÈÊýÁС±£»
£¨3£©ÒÑÖªÊýÁÐ{an}µÄÊ×ÏîΪ1£¬¸÷Ïî¾ùΪÕûÊý£¬Ç°kÏîµÄºÍΪSk£®ÇÒ¶ÔÈÎÒâk¡Ý2£¬k¡ÊN£¬¶¼ÓÐ3P£¨Sk£©=2P£¨ak£©£¬ÊÔ¼ÆË㣺$C_n^2P£¨{a_2}£©+2C_n^3P£¨{a_3}£©+¡+£¨n-1£©C_n^nP£¨{a_n}£©$£¨n¡Ý2£¬n¡ÊN£©£®
·ÖÎö £¨1£©ÓÉж¨Òå¿ÉµÃ|1-x|£¾$\frac{|1-x|+|x-2|}{2}$£¬½â²»µÈʽ¿ÉµÃxµÄ·¶Î§£»
£¨2£©ÔËÓõȱÈÊýÁеÄͨÏʽºÍÇóºÍ¹«Ê½£¬½áºÏж¨Ò壬ÔËÓò»µÈʽµÄÐÔÖʼ´¿ÉµÃÖ¤£»
£¨3£©ÓÉÈÎÒâk¡Ý2£¬k¡ÊN£¬¶¼ÓÐ3P£¨Sk£©=2P£¨ak£©£¬¿ÉµÃ£¨k-1£©P£¨Sk£©-£¨k-2£©P£¨Sk-1£©=|ak|£¬ÓɵȱÈÊýÁеÄͨÏʽ£¬¿ÉµÃ${a_k}={£¨-2£©^{k-1}}$£¬½áºÏж¨ÒåºÍ¶þÏîʽ¶¨Àí£¬»¯¼òÕûÀí¼´¿ÉµÃµ½ËùÇóÖµ£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ$|{1-x}|£¾\frac{{|{1-x}|+|{x-2}|}}{2}$£¬
¼´|1-x|£¾|x-2|£¬Á½±ßƽ·½¿ÉµÃx2-2x+1£¾x2-4x+4£¬
½âµÃ$x£¾\frac{3}{2}$£»
£¨2£©Ö¤Ã÷£ºÓÉÒÑÖª£¬Éè${b_n}={b_1}{q^{n-1}}£¨{b_1}£¾0£©$£¬
Òòb1£¾0ÇÒ0£¼q£¼1£¬
¹Ê¶ÔÈÎÒâµÄk¡Ý2£¬k¡ÊN*£¬¶¼ÓÐbk-1£¾bk£¬
¡à$P£¨{b_k}£©=\frac{1}{k-1}£¨|{{b_1}-{b_2}}|+|{{b_2}-{b_3}}|+¡+|{{b_{k-1}}-{b_k}}|£©$
=$\frac{1}{k-1}£¨{b_1}-{b_2}+{b_2}-{b_3}+¡+{b_{k-1}}-{b_k}£©=\frac{{{b_1}£¨1-q£©}}{k-1}£¨1+q+{q^2}+¡+{q^{k-2}}£©$£¬$P£¨{b_{k+1}}£©=\frac{{{b_1}£¨1-q£©}}{k}£¨1+q+{q^2}+¡+{q^{k-1}}£©$£¬
Òò0£¼q£¼1¡àqi£¾qk-1£¨i£¼k-1£©£¬
¡à1£¾qk-1£¬q£¾qk-1£¬q2£¾qk-1£¬¡£¬qk-2£¾qk-1£¬
¡à1+q+q2+¡+qk-2£¾£¨k-1£©qk-1£¬
¡àk£¨1+q+q2+¡+qk-2£©£¾£¨k-1£©£¨1+q+q2+¡+qk-2+qk-1£©£¬
¡à$\frac{{£¨1+q+{q^2}+¡+{q^{k-2}}£©}}{k-1}£¾\frac{{£¨1+q+{q^2}+¡+{q^{k-2}}+{q^{k-1}}£©}}{k}$£¬
¡à$\frac{{{b_1}£¨1-q£©£¨1+q+{q^2}+¡+{q^{k-2}}£©}}{k-1}£¾\frac{{{b_1}£¨1-q£©£¨1+q+{q^2}+¡+{q^{k-2}}+{q^{k-1}}£©}}{k}$
¼´¶ÔÈÎÒâµÄk¡Ý2£¬k¡ÊN*£¬¶¼ÓÐP£¨bk£©£¾P£¨bk+1£©£¬¹Ê{bn}ÊÇ¡°Ç÷ÎÈÊýÁС±£»
£¨3£©µ±k¡Ý2ʱ£¬$P£¨{S_k}£©=\frac{1}{k-1}£¨|{{S_1}-{S_2}}|+|{{S_2}-{S_3}}|+¡+|{{S_{k-1}}-{S_k}}|£©=\frac{1}{k-1}£¨|{a_2}|+|{a_3}|+¡+|{a_k}|£©$
µ±k¡Ý3ʱ£¬$P£¨{S_{k-1}}£©=\frac{1}{k-2}£¨|{a_2}|+|{a_3}|+¡+|{{a_{k-1}}}|£©$£¬
¡à£¨k-1£©P£¨Sk£©-£¨k-2£©P£¨Sk-1£©=|ak|
ͬÀí£¬£¨k-1£©P£¨ak£©-£¨k-2£©P£¨ak-1£©=|ak-1-ak|£¬
Òò3P£¨Sk£©=2P£¨ak£©£¬
¡à3£¨k-1£©P£¨Sk£©=2£¨k-1£©P£¨ak£©3£¨k-2£©P£¨Sk-1£©=2£¨k-2£©P£¨ak-1£©£¬
¼´3|ak|=2|ak-1-ak|£¬
ËùÒÔ3ak=2£¨ak-1-ak£©»ò 3ak=-2£¨ak-1-ak£©
ËùÒÔ ak=-2ak-1»ò ${a_k}=\frac{2}{5}{a_{k-1}}$
ÒòΪa1=1£¬ÇÒak¡ÊZ£¬ËùÒÔak=-2ak-1£¬´Ó¶ø${a_k}={£¨-2£©^{k-1}}$£¬
ËùÒÔp£¨ak£©=$\frac{1}{k-1}$£¨|1-£¨-2£©|+|-2-£¨-2£©2|+¡+|£¨-2£©k-2-£¨-2£©k-1£©=$\frac{3£¨{2}^{k-1}-1£©}{k-1}$£¬$C_n^2P£¨{a_2}£©+2C_n^3P£¨{a_3}£©+3C_n^4P£¨{a_4}£©+¡+£¨n-1£©C_n^nP£¨{a_n}£©$
=$3[£¨C_n^2•2+C_n^3•{2^2}+C_n^4•{2^3}+¡+C_n^n•{2^{n-1}}£©-£¨C_n^2+C_n^3+C_n^4+¡+C_n^n£©]$
=$3[\frac{1}{2}£¨{3^n}-2n-1£©-£¨{2^n}-n-1£©]=\frac{3}{2}£¨{3^n}-{2^{n+1}}+1£©$£®
µãÆÀ ±¾Ì⿼²éж¨ÒåµÄÀí½âºÍÔËÓ㬿¼²éµÈ±ÈÊýÁеÄͨÏʽºÍÇóºÍ¹«Ê½µÄÔËÓ㬿¼²é¶þÏîʽ¶¨ÀíµÄÔËÓ㬿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
| A£® | $[\sqrt{2}-1£¬\;\sqrt{2}+1]$ | B£® | $[\sqrt{2}-1£¬\;\sqrt{2}]$ | C£® | $[\sqrt{2}£¬\;\sqrt{2}+1]$ | D£® | $[2-\sqrt{2}£¬\;2+\sqrt{2}]$ |
| A£® | Ïཻ | B£® | ÏàÀë | C£® | ÏàÇÐ | D£® | ²»ÄÜÈ·¶¨ |