题目内容
11.已知单位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夹角为120°,则$\overrightarrow{{e}_{1}}$$•\overrightarrow{{e}_{2}}$=-$\frac{1}{2}$,|$\overrightarrow{{e}_{1}}$-$λ\overrightarrow{{e}_{2}}$|(λ∈R)的最小值为$\frac{\sqrt{3}}{2}$.分析 利用两个向量的数量积的定义求得$\overrightarrow{{e}_{1}}$$•\overrightarrow{{e}_{2}}$的值,再根据于|$\overrightarrow{{e}_{1}}$-$λ\overrightarrow{{e}_{2}}$|=$\sqrt{{(\overrightarrow{{e}_{1}}-λ\overrightarrow{{e}_{2}})}^{2}}$,计算求得结果.
解答 解:∵单位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夹角为120°,则$\overrightarrow{{e}_{1}}$$•\overrightarrow{{e}_{2}}$=1•1•cos120°=-$\frac{1}{2}$;
由于|$\overrightarrow{{e}_{1}}$-$λ\overrightarrow{{e}_{2}}$|(λ∈R)=$\sqrt{{(\overrightarrow{{e}_{1}}-λ\overrightarrow{{e}_{2}})}^{2}}$=$\sqrt{{\overrightarrow{{e}_{1}}}^{2}-2λ•\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}{+λ}^{2}{•\overrightarrow{{e}_{2}}}^{2}}$=$\sqrt{1-2λ•(-\frac{1}{2}){+λ}^{2}}$=$\sqrt{{(λ+\frac{1}{2})}^{2}+\frac{3}{4}}$,
故当λ=-$\frac{1}{2}$时,|$\overrightarrow{{e}_{1}}$-$λ\overrightarrow{{e}_{2}}$|(λ∈R)取得最小值为$\sqrt{\frac{3}{4}}$=$\frac{\sqrt{3}}{2}$,
故答案为:-$\frac{1}{2}$;$\frac{\sqrt{3}}{2}$.
点评 本题主要考查两个向量的数量积的定义,求向量的模的方法,属于基础题.
| A. | f(x),g(x)均有零点 | B. | f(x),g(x)都没有有零点 | ||
| C. | g(x)有,f(x)没有 | D. | f(x)有,g(x)没有 |
| A. | $\frac{{\sqrt{2}}}{3}$ | B. | $\frac{{\sqrt{10}}}{10}$ | C. | $\frac{{\sqrt{2}}}{4}$ | D. | $2\sqrt{2}$ |
| A. | 255 | B. | 125 | C. | 75 | D. | 35 |