题目内容
(2013•浙江模拟)已知O是锐角△ABC的外接圆的圆心,且∠A=
,若
+
=2m
,则m=
.
| π |
| 4 |
| cosB |
| sinC |
| AB |
| cosC |
| sinB |
| AC |
| AO |
| ||
| 2 |
| ||
| 2 |
分析:取AB的中点为D,可得
=
+
代入已知的等式中,结合正弦定理和向量的运算法则变形,并用三角函数表示出m,化简后可得结果.
| AO |
| AD |
| DO |
解答:
解:取AB中点D,则有
=
+
,代入已知式子可得
+
=2m(
+
),
由
⊥
,可得
•
=0,∴两边同乘
,化简得:
•
+
•
=2m(
+
)•
=m
•
,即
c2+
bc•cosA=mc2,
由正弦定理化简可得
sin2C+
sinBsinC•cosA=msin2C,
由sinC≠0,两边同时除以sinC得:cosB+cosAcosC=msinC,
∴m=
=
=
=sinA=sin
=
故答案为:
| AO |
| AD |
| DO |
| cosB |
| sinC |
| AB |
| cosC |
| sinB |
| AC |
| AD |
| DO |
由
| OD |
| AB |
| OD |
| AB |
| AB |
| cosB |
| sinC |
| AB |
| AB |
| cosC |
| sinB |
| AC |
| AB |
=2m(
| AD |
| DO |
| AB |
| AB |
| AB |
| cosB |
| sinC |
| cosC |
| sinB |
由正弦定理化简可得
| cosB |
| sinC |
| cosC |
| sinB |
由sinC≠0,两边同时除以sinC得:cosB+cosAcosC=msinC,
∴m=
| cosB+cosAcosC |
| sinC |
| -cos(A+C)+cosAcosC |
| sinC |
=
| -cosAcosC+sinAsinC+cosAcosC |
| sinC |
=sinA=sin
| π |
| 4 |
| ||
| 2 |
故答案为:
| ||
| 2 |
点评:本题考查平面向量,正弦定理以及两角和与差的余弦函数公式,熟练掌握定理及公式是解本题的关键,属中档题.
练习册系列答案
相关题目