题目内容
已知sinαcosβ=1,则cos
=______.
| α+β |
| 2 |
∵-1≤sinα≤1,-1≤cosβ≤1,sinαcosβ=1,∴sinα=cosβ=1,或sinα=cosβ=-1,
∴α=2kπ+
,β=2nπ,或 α=2kπ-
,β=2nπ+π,k,n∈z.
故α+β=(2n+2k)π+
,∴
=(n+k)π+
,∴则cos
=±
,
故答案为:±
.
∴α=2kπ+
| π |
| 2 |
| π |
| 2 |
故α+β=(2n+2k)π+
| π |
| 2 |
| α+ β |
| 2 |
| π |
| 4 |
| α+β |
| 2 |
| ||
| 2 |
故答案为:±
| ||
| 2 |
练习册系列答案
相关题目