题目内容
若函数在上单调递减,则可以是
A.1 B. C. D.
(本题满分15分)已知椭圆:过点,离心率为.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设分别为椭圆的左、右焦点,过的直线与椭圆交于不同两点,记的内切圆的面积为,求当取最大值时直线的方程,并求出最大值.
(本题满分15分)如图,在三棱锥中,平面,,,、、分别为、、的中点,、分别为线段、上的动点,且有.
(1)求证:面;
(2)探究:是否存在这样的动点M,使得二面角为直二面角?若存在,求CM的长度;若不存在,说明理由.
(本小题满分12分)已知点分别是椭圆的左、右焦点, 点在椭圆上上.
(1)求椭圆的标准方程;
(2)设直线若、均与椭圆相切,试探究在轴上是否存在定点,点到的距离之积恒为1?若存在,请求出点坐标;若不存在,请说明理由.
已知三角形所在平面与矩形所在平面互相垂直,,,若点都在同一球面上,则此球的表面积等于
等差数列中,,则该数列前13项的和是
A.13 B.26 C.52 D.156
(本小题满分12分)如图,在几何体中,,,,且,.
(1)求证:;
(2)求二面角的余弦值.
若某公司从五位大学毕业生甲、乙、丙、丁、戌中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为 ( )
A. B. C. D.
执行如图所示的程序框图,则输出S的值是( )