题目内容
设△ABC的内角A、B、C的对边分别为a、b、c,且A=
,a=2bcosC,求:
(Ⅰ)角B的值;
(Ⅱ)函数f(x)=sin2x+cos(2x-B)在区间[0,
]上的最大值及对应的x值.
| 2π |
| 3 |
(Ⅰ)角B的值;
(Ⅱ)函数f(x)=sin2x+cos(2x-B)在区间[0,
| π |
| 2 |
(Ⅰ)由2a=bcosC,得sinA=2sinBcosC
∵A=π-(B+C)∴sin(B+C)=2sinBcosC,整理得sin(B-C)=0
∵B、C是△ABC的内角,∴B=C又由A=
,∴B=
(Ⅱ)f(x)=sin2x+cos(2x-
)=
sin2x+
cos2x=
sin(2x+
)
由0≤x≤
,得
≤2x+
≤
∴ymax=
,此时2x+
=
,x=
∵A=π-(B+C)∴sin(B+C)=2sinBcosC,整理得sin(B-C)=0
∵B、C是△ABC的内角,∴B=C又由A=
| 2π |
| 3 |
| π |
| 6 |
(Ⅱ)f(x)=sin2x+cos(2x-
| π |
| 6 |
| 3 |
| 2 |
| ||
| 2 |
| 3 |
| π |
| 6 |
由0≤x≤
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
| 7π |
| 6 |
∴ymax=
| 3 |
| π |
| 6 |
| π |
| 2 |
| π |
| 6 |
练习册系列答案
相关题目