题目内容
设△ABC的内角A,B,C的对边分别为a,b,c,已知向量,
=(a,-c),
=(cosA,cosB),
=(a,b),
=(cos(B+C),cosC),
•
=
•
,a=
,c=4.
(1)求cosA的值;
(2)求△ABC的面积S.
| m |
| n |
| p |
| q |
| m |
| n |
| p |
| q |
| 13 |
(1)求cosA的值;
(2)求△ABC的面积S.
(1)
=(a,-c),
=(cosA,cosB),
=(a,b),
=(cos(B+C),cosC),
•
=
•
.
∴a•cosA-c•cosB=a•cos(B+C)+b•cosC,即 2a•cosA=c•cosB++b•cosC.
再由正弦定理可得 2sinAcosA=sinCcosB cosCsinB=sin(B+C)=sinA,由于sinA≠0,∴cosA=
.
(2)由(1)可得cosA=
,A=
.
△ABC中,由余弦定理可得 13=b2+16-8bcosA=b2+16-4b,解得 b=5或 b=-1 (舍去).
故△ABC的面积S=
bc•sinA=5
.
| m |
| n |
| p |
| q |
| m |
| n |
| p |
| q |
∴a•cosA-c•cosB=a•cos(B+C)+b•cosC,即 2a•cosA=c•cosB++b•cosC.
再由正弦定理可得 2sinAcosA=sinCcosB cosCsinB=sin(B+C)=sinA,由于sinA≠0,∴cosA=
| 1 |
| 2 |
(2)由(1)可得cosA=
| 1 |
| 2 |
| π |
| 3 |
△ABC中,由余弦定理可得 13=b2+16-8bcosA=b2+16-4b,解得 b=5或 b=-1 (舍去).
故△ABC的面积S=
| 1 |
| 2 |
| 3 |
练习册系列答案
相关题目