题目内容
13.若函数y=ln($\sqrt{1+a{x}^{2}}$-2x)为奇函数,则a=4.分析 利用函数是奇函数的性质f(-x)=-f(x)求解即可.
解答 解:函数y=ln($\sqrt{1+a{x}^{2}}$-2x)为奇函数,
可得f(-x)=-f(x),
ln($\sqrt{1+a{x}^{2}}$+2x)=-ln($\sqrt{1+a{x}^{2}}$-2x).
ln($\sqrt{1+a{x}^{2}}$+2x)=ln($\frac{1}{\sqrt{1+{ax}^{2}}-2x}$)=ln($\frac{\sqrt{1+{ax}^{2}}+2x}{1+{ax}^{2}-{4x}^{2}}$).
可得1+ax2-4x2=1,
解得a=4.
故答案为:4.
点评 本题考查函数的奇偶性的应用,考查计算能力.
练习册系列答案
相关题目
1.
如图,小圆圈表示网络结点,结点之间的连线表示它们之间有网线连接,连线标注的数字表示该段网线单位时间内可以通过的最大信息量,现从结点A向结点B发送信息,信息可以分开沿不同的路线同时传递,则单位时间内传递的最大信息量为( )
| A. | 19 | B. | 20 | C. | 24 | D. | 26 |
8.双曲线E与椭圆C:$\frac{{x}^{2}}{9}$$+\frac{{y}^{2}}{3}$=1有相同焦点,且以E的一个焦点为圆心与双曲线的渐近线相切的圆的面积为π,则E的离心率为( )
| A. | e=$\sqrt{2}$ | B. | e=$\frac{\sqrt{6}}{2}$ | C. | e=$\frac{\sqrt{30}}{5}$ | D. | e=$\sqrt{3}$ |