题目内容
已知公差不为0的等差数列{an}的首项为4,设数列的前n项和为Sn,且
,
,
成等比数列.
(1)求数列{an}的通项公式an及Sn;
(2)记An=
+
+
+…+
,Bn=
+
+
+…+
,当n≥2时,试比较An与Bn的大小.
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a4 |
(1)求数列{an}的通项公式an及Sn;
(2)记An=
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| S3 |
| 1 |
| Sn |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a22 |
| 1 |
| a2n-1 |
分析:(1)设出等差数列的公差,利用等比中项的性质,建立等式求得d,则数列的通项公式和前n项的和可得;
(2)利用(Ⅰ)的an和Sn,代入不等式,利用裂项法和等比数列的求和公式整理An与Bn,然后进行比较.
(2)利用(Ⅰ)的an和Sn,代入不等式,利用裂项法和等比数列的求和公式整理An与Bn,然后进行比较.
解答:解:(1)设等差数列{an}的公差为d,由(
)2=
•
,
得(a1+d)2=a1(a1+3d),因为d≠0,所以d=a1=4,
所以an=4n,Sn=4n+
=2n(n+1);
(2)∵
=
(
-
)
∴An=
+
+…+
=
(1-
+
-
+…+
-
)=
(1-
).
又a2n-1=4•2n-1=2n+1,
∴Bn=
+
+…+
=
•
=
(1-
).
当n≥2时,2n=
+
+…+
>n+1,
即1-
<1-
.
所以An<Bn.
| 1 |
| a2 |
| 1 |
| a1 |
| 1 |
| a4 |
得(a1+d)2=a1(a1+3d),因为d≠0,所以d=a1=4,
所以an=4n,Sn=4n+
| 4n(n-1) |
| 2 |
(2)∵
| 1 |
| Sn |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+1 |
∴An=
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 2 |
| 1 |
| n+1 |
又a2n-1=4•2n-1=2n+1,
∴Bn=
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a2n-1 |
| 1 |
| 4 |
1-(
| ||
1-
|
| 1 |
| 2 |
| 1 |
| 2n |
当n≥2时,2n=
| C | 0 n |
| C | 1 n |
| C | n n |
即1-
| 1 |
| n+1 |
| 1 |
| 2n |
所以An<Bn.
点评:本题是数列和不等式的综合题,考查了等比数列的性质,考查了裂项相消法求数列的和,训练了利用放缩法求解不等式,是有一定难度题目.
练习册系列答案
相关题目