题目内容

10.已知A,B,C三点共线,且满足$\overrightarrow{CA}$=4sinx$\overrightarrow{OB}$+cosx$\overrightarrow{OC}$(O是不同于A,B,C的一点),则cos2x+sin2x=(  )
A.$\frac{7}{17}$B.$\frac{23}{17}$C.-$\frac{23}{17}$D.-$\frac{7}{17}$

分析 满足$\overrightarrow{CA}$=4sinx$\overrightarrow{OB}$+cosx$\overrightarrow{OC}$(O是不同于A,B,C的一点),可得:$\overrightarrow{OA}$=4sinx$\overrightarrow{OB}$+(1+cosx)$\overrightarrow{OC}$.由于A,B,C三点共线,可得4sinx+1+cosx=1,再利用同角三角函数基本关系式、倍角公式即可得出.

解答 解:∵满足$\overrightarrow{CA}$=4sinx$\overrightarrow{OB}$+cosx$\overrightarrow{OC}$(O是不同于A,B,C的一点),
∴$\overrightarrow{OA}$=4sinx$\overrightarrow{OB}$+(1+cosx)$\overrightarrow{OC}$,
∵A,B,C三点共线,
∴4sinx+1+cosx=1,
可得tanx=$-\frac{1}{4}$.
∴cos2x+sin2x=$\frac{co{s}^{2}x-si{n}^{2}x+2sinxcosx}{si{n}^{2}x+co{s}^{2}x}$=$\frac{1-ta{n}^{2}x+2tanx}{ta{n}^{2}x+1}$=$\frac{1-(-\frac{1}{4})^{2}+2×(-\frac{1}{4})}{(-\frac{1}{4})^{2}+1}$=$-\frac{7}{17}$.
故选:D.

点评 本题考查了同角三角函数基本关系式、倍角公式、向量共线定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网