ÌâÄ¿ÄÚÈÝ

10£®ÈôÇúÏßC1£º$\left\{{\begin{array}{l}{x=cos¦È}\\{y=sin¦È}\end{array}}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÇúÏßC2£º$\left\{{\begin{array}{l}{x=acosϕ}\\{y=bsinϕ}\end{array}}\right.$£¨ϕΪ²ÎÊý£©£¬ÒÔOΪ¼«µã£¬xµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÉäÏßl£º¦È=¦ÁÓëC1£¬C2·Ö±ð½»ÓÚP£¬QÁ½µã£¬µ±¦Á=0ʱ£¬|PQ|=2£¬µ±$¦Á=\frac{¦Ð}{2}$ʱ£¬PÓëQÖØºÏ£®
£¨¢ñ£©°ÑC1¡¢C2»¯ÎªÆÕͨ·½³Ì£¬²¢Çóa£¬bµÄÖµ£»
£¨¢ò£©Ö±Ïßl£º$\left\{{\begin{array}{l}{x=1-\frac{{\sqrt{2}}}{2}t}\\{y=-1+\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$£¨tΪ²ÎÊý£©ÓëC2½»ÓÚA£¬BÁ½µã£¬Çó|AB|£®

·ÖÎö £¨¢ñ£©ÏûÈ¥²ÎÊý£¬¼´¿É°ÑC1¡¢C2»¯ÎªÆÕͨ·½³Ì£¬µ±$¦Á=\frac{¦Ð}{2}$ʱ£¬PÓëQÖØºÏ£¬¼´¿ÉÇóa£¬bµÄÖµ£»
£¨¢ò£©°ÑÖ±Ïßl£º$\left\{{\begin{array}{l}{x=1-\frac{{\sqrt{2}}}{2}t}\\{y=-1+\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$£¨tΪ²ÎÊý£©ÓëC2ÁªÁ¢£¬ÀûÓÃÏÒ³¤¹«Ê½Ö±½ÓÇó½â|AB|£®

½â´ð ½â£º£¨¢ñ£©C1£ºx2+y2=1£¬C2£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$
µ±¦Á=0ʱ£¬P£¨1£¬0£©£¬Q£¨a£¬0£©¡à|PQ|=a-1=2£¬a=3
µ±$¦Á=\frac{¦Ð}{2}$ʱ£¬PÓëQÖØºÏ£¬
¡àb=1£¬C2£º$\frac{x^2}{9}+{y^2}=1$¡­£®£¨5·Ö£©
£¨¢ò£©°Ñ$\left\{{\begin{array}{l}{x=1-\frac{{\sqrt{2}}}{2}t}\\{y=-1+\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$´úÈë$\frac{x^2}{9}+{y^2}=1$µÃ $5{t^2}-10\sqrt{2}t+1=0$
¡à${t_1}+{t_2}=2\sqrt{2}$£¬${t_1}{t_2}=\frac{1}{5}$
¡à|AB|=$|{t_1}-{t_2}|=\sqrt{{{£¨{t_1}+{t_2}£©}^2}-4{t_1}{t_2}}=\frac{{6\sqrt{5}}}{5}$¡­£¨10·Ö£©

µãÆÀ ±¾Ì⿼²é²ÎÊý·½³ÌÓë²ÅµÄ»¥»¯£¬²ÎÊý·½³ÌµÄ¼¸ºÎÒâÒ壬¿¼²é¼ÆËãÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø