题目内容
计算下列各式
(Ⅰ)lg22+lg5lg20-1
(Ⅱ)(
×
)6+(
)
-4×(
)-
-
×80.25-(-2011)0.
(Ⅰ)lg22+lg5lg20-1
(Ⅱ)(
| 3 | 2 |
| 3 |
2
|
| 4 |
| 3 |
| 16 |
| 49 |
| 1 |
| 2 |
| 4 | 2 |
分析:(Ⅰ)直接利用对数的运算性质化简求值;
(Ⅱ)化根式为分数指数幂,化小数为分数,负指数为正指数,然后运用有理指数幂的运算性质化简求值.
(Ⅱ)化根式为分数指数幂,化小数为分数,负指数为正指数,然后运用有理指数幂的运算性质化简求值.
解答:解:(Ⅰ)lg22+lg5lg20-1
=lg22+(1-lg2)(1+lg2)-1
=lg22+1-lg22-1=0;
(Ⅱ)(
×
)6+(
)
-4×(
)-
-
×80.25-(-2011)0
=22×32+(2
)
-4×
-2
×2
-1
=4×27+2-7-2-1=100.
=lg22+(1-lg2)(1+lg2)-1
=lg22+1-lg22-1=0;
(Ⅱ)(
| 3 | 2 |
| 3 |
2
|
| 4 |
| 3 |
| 16 |
| 49 |
| 1 |
| 2 |
| 4 | 2 |
=22×32+(2
| 3 |
| 4 |
| 4 |
| 3 |
| 7 |
| 4 |
| 1 |
| 4 |
| 3 |
| 4 |
=4×27+2-7-2-1=100.
点评:本题考查了对数的运算性质,考查了有理指数幂的化简与求值,是基础的计算题.
练习册系列答案
相关题目