题目内容
(本题8分)如图,ABCD是正方形,O是正方形的中心, PO底面ABCD,E是PC的中点。求证:(1)PA∥平面BDE (2)平面PAC平面BDE
见解析。
解析
(本题满分10分)如图,已知四棱锥底面为菱形,平面,,分别是、的中点. (1)证明:(2)设, 若为线段上的动点,与平面所成的最大角的正切值为,求此时异面直线AE和CH所成的角.
(本题满分13分)如图一,平面四边形关于直线对称,。把沿折起(如图二),使二面角的余弦值等于。对于图二,(Ⅰ)求;(Ⅱ)证明:平面;(Ⅲ)求直线与平面所成角的正弦值。
(12分)已知如图:平行四边形ABCD中,,正方形ADEF所在平面与平面ABCD垂直,G,H分别是DF,BE的中点.(1)求证:GH∥平面CDE;(2)若,求四棱锥F-ABCD的体积.
(本小题满分14分)如图,在四棱锥中,平面平面,为等边三角形,底面为菱形,,为的中点,。 (1)求证:平面;(2) 求四棱锥的体积(3)在线段上是否存在点,使平面; 若存在,求出的值。
(本题13分)在几何体ABCDE中,∠BAC= ,DC⊥平面ABC,EB⊥平面ABC,F是BC的中点,AB=AC=BE=2,CD=1. (1)求证:DC∥平面ABE;(2)求证:AF⊥平面BCDE;(3)求几何体ABCDE的体积.
已知正方形的边长为2,.将正方形沿对角线折起,使,得到三棱锥,如图所示. (1)当时,求证:;(2)当二面角的大小为时,求二面角的正切值.
如图,在四棱锥中,底面是矩形,底面,是的中点,已知,,,求:(Ⅰ)三角形的面积;(II)三棱锥的体积
(本小题满分14分)一个几何体是由圆柱和三棱锥组合而成,点、、在圆的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图2所示,其中,,,.(1)求证:;(2)求三棱锥的体积.