题目内容
已知函数f(x)在x=1处可导,且
=1,则f′(1)=
.
| lim |
| t→0 |
| f(1+3t)-f(1) |
| 2t |
| 2 |
| 3 |
| 2 |
| 3 |
分析:变形使之符合导数的定义
=f′(1),求出即可.
| lim |
| △→0 |
| f(1+△)-f(1) |
| △ |
解答:解:∵函数f(x)在x=1处可导,且
=1,
则
×
=1,
∴
f′(1)=1,
∴f′(1)=
.
故答案为
.
| lim |
| t→0 |
| f(1+3t)-f(1) |
| 2t |
则
| lim |
| t→0 |
| f(1+3t)-f(1) |
| (1+3t)-1 |
| 3 |
| 2 |
∴
| 3 |
| 2 |
∴f′(1)=
| 2 |
| 3 |
故答案为
| 2 |
| 3 |
点评:充分理解导数的定义式是解题的关键.
练习册系列答案
相关题目