题目内容

10.已知正项等比数列{bn}的前n项和为Sn,b3=4,S3=7,数列{an}满足an+1-an=n+1(n∈N*),且a1=b1
(1)求数列[an}的通项公式;
(2)设数列{$\frac{1}{{a}_{n}}$}的前n项和Sn,求证:Sn<2.

分析 (1)根据题意,设等比数列{bn}的公比为q,由b3=4,S3=7,可得$\left\{\begin{array}{l}{{b}_{1}{q}^{2}=4}\\{{b}_{1}(1+q+{q}^{2})=7}\end{array}\right.$,解得:b1,q,可得a1=b1=1.又an+1-an=n+1(n∈N*),利用an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1即可得出.
(2)由$\frac{1}{{a}_{n}}$=$\frac{2}{n(n+1)}$=2$(\frac{1}{n}-\frac{1}{n+1})$.利用裂项求和方法即可得出.

解答 (1)解:根据题意,设等比数列{bn}的公比为q,由b3=4,S3=7,
可得$\left\{\begin{array}{l}{{b}_{1}{q}^{2}=4}\\{{b}_{1}(1+q+{q}^{2})=7}\end{array}\right.$,解得:b1=1,q=2,
∴a1=b1=1.
又an+1-an=n+1(n∈N*),
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=n+(n-1)+…+2+1
=$\frac{n(n+1)}{2}$.
(2)证明:$\frac{1}{{a}_{n}}$=$\frac{2}{n(n+1)}$=2$(\frac{1}{n}-\frac{1}{n+1})$.
∴Sn=2$[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$
=2$(1-\frac{1}{n+1})$<2.

点评 本题考查了数列递推关系、等差数列与等比数列的通项公式与求和公式、裂项求和方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网