题目内容
已知直线y=2x+k被抛物线x2=4y截得的弦长AB为20,O为坐标原点.
(1)求实数k的值;
(2)问点C位于抛物线弧AOB上何处时,△ABC面积最大?
已知直线y=kx+1与双曲线3x2-y2=1有A、B两个不同的交点.
(1)如果以AB为直径的圆恰好过原点O,试求k的值;
(2)是否存在k,使得两个不同的交点A、B关于直线y=2x对称?试述理由.
设数列{xn}的所有项都是不等于1的正数,前n项和为Sn,已知点Pn(xn,Sn)在直线y=kx+b上(其中常数k≠0,且k≠1),又yn=log0.5xn.
(1)求证:数列{xn}是等比数列;
(2)如果yn=18-3n,求实数k、b的值;
(3)如果存在t、s∈N*,s≠t,使得点(t,ys)和(s,yt)都在直线y=2x+1上,试判断,是否存在自然数M,当n>M时,xn>1恒成立?若存在,求出M的最小值,若不存在,请说明理由.
(本小题满分12分)已知曲线C:y=与直线l:y=2x+k,当k为何值时,l与C:①有一个公共点;②有两个公共点;③没有公共点.