题目内容
1.若tanα=2,则sin2α-cos2α的值为( )| A. | $\frac{4}{5}$ | B. | -$\frac{4}{5}$ | C. | $\frac{3}{5}$ | D. | -$\frac{3}{5}$ |
分析 利用二倍角公式,同角三角函数基本关系式化简所求,即可利用已知条件计算求值.
解答 解:∵tanα=2,
∴sin2α-cos2α=$\frac{2sinαcosα-co{s}^{2}α}{si{n}^{2}α+co{s}^{2}α}$=$\frac{2tanα-1}{ta{n}^{2}α+1}$=$\frac{3}{5}$.
故选:C.
点评 本题主要考查了二倍角公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.
练习册系列答案
相关题目
12.命题“?x0∈R,x${\;}_{0}^{2}=1$”的否定形式是( )
| A. | ?x0∈R,x${\;}_{0}^{2}≠1$ | B. | ?x0∈R,x${\;}_{0}^{2}>1$ | C. | ?x∈R,x2=1 | D. | ?x∈R,x2≠1 |
9.在△ABC中,∠BAC=75°,AB=3,AC=4,若点D,E都在边BC上,并且∠BAD=∠CAE=30°,则$\frac{BD•BE}{CD•CE}$=( )
| A. | $\frac{\sqrt{6}}{4}$ | B. | $\frac{3}{4}$ | C. | $\frac{9}{16}$ | D. | $\sqrt{2}$ |