题目内容
8.把1、2、3、4、5、6、7、8、9、10分别写在10张形状大小一样的卡片上,随机抽取一张卡片,则抽到写着偶数或大于6的数的卡片的概率为$\frac{7}{10}$.(结果用最简分数表示)分析 先求出基本事件总数,再求出抽到写着偶数或大于6的数的卡片包含的基本事件个数,由此能求出抽到写着偶数或大于6的数的卡片的概率.
解答 解:把1、2、3、4、5、6、7、8、9、10分别写在10张形状大小一样的卡片上,
随机抽取一张卡片,
基本事件总数n=10,
抽到写着偶数或大于6的数的卡片包含的基本事件个数为7,
则抽到写着偶数或大于6的数的卡片的概率为
故答案为:$\frac{7}{10}$.
点评 本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.
练习册系列答案
相关题目
20.若偶函数f(x)满足f(x)=$\left\{{\begin{array}{l}{x-1+ln3-ln(2x+1),0<x≤\frac{1}{2}}\\{\frac{(x+1)(x+2)(x+3)ln(2x-1)}{3x+5},x>\frac{1}{2}}\end{array}}$则曲线y=f(x)在点(-1,0)处的切线方程为( )
| A. | 6x-y+6=0 | B. | x-3y+1=0 | C. | 6x+y+6=0 | D. | x+3y+1=0 |
18.如图是八位同学400米测试成绩的茎叶图(单位:秒),则( )

| A. | 平均数为64 | B. | 众数为7 | C. | 极差为17 | D. | 中位数为64.5 |