题目内容
(2012•泰安一模)在△ABC中,角A、B、C所对应的边分别为a、b、c,且满足2acosB=bcosC+ccosB.
(I)求角B的大小;
(II)求函数f(A)=2sin2(A+
)-cos(2A+
)的最大值及取得最大值时的A值.
(I)求角B的大小;
(II)求函数f(A)=2sin2(A+
| π |
| 4 |
| π |
| 6 |
分析:(Ⅰ)由2acosB=bcosC+ccosB结合正弦定理可得cosB=
,从而可求角B的大小;
(Ⅱ)由降幂公式与辅助角公式可将f(A)整理为:f(A)=1+
sin(2A-
),由B=
,可求得0<A<
,从而可求f(A)的最大值及取得最大值时的A值.
| 1 |
| 2 |
(Ⅱ)由降幂公式与辅助角公式可将f(A)整理为:f(A)=1+
| 3 |
| π |
| 6 |
| π |
| 3 |
| 2π |
| 3 |
解答:解:(Ⅰ)∵2acosB=bcosC+ccosB,由正弦定理
=
=
=2R得:
2sinAcosB=sinBcosC+cosBsinC…2′
即2sinAcosB=sin(B+C)=sinA,…4′
∴cosB=
,
∴B=
…6′
(Ⅱ)f(A)=2sin2(A+
)-cos(2A+
)
=1-cos(2A+
)-cos(2A+
)
=1+sin2A-
cos2A+
sin2A
=1+
sin2A-
cos2A
=1+
sin(2A-
)…9′
∵在△ABC中,B=
,
∴0<A<
,
∴-
<2A-
<
,
∴当2A-
=
,即A=
时,f(A)取最大值.
∴f(A)max=1+
…12′
| a |
| sinA |
| b |
| sinB |
| c |
| sinC |
2sinAcosB=sinBcosC+cosBsinC…2′
即2sinAcosB=sin(B+C)=sinA,…4′
∴cosB=
| 1 |
| 2 |
∴B=
| π |
| 3 |
(Ⅱ)f(A)=2sin2(A+
| π |
| 4 |
| π |
| 6 |
=1-cos(2A+
| π |
| 2 |
| π |
| 6 |
=1+sin2A-
| ||
| 2 |
| 1 |
| 2 |
=1+
| 3 |
| 2 |
| ||
| 2 |
=1+
| 3 |
| π |
| 6 |
∵在△ABC中,B=
| π |
| 3 |
∴0<A<
| 2π |
| 3 |
∴-
| π |
| 6 |
| π |
| 6 |
| 7π |
| 6 |
∴当2A-
| π |
| 6 |
| π |
| 2 |
| π |
| 3 |
∴f(A)max=1+
| 3 |
点评:本题考查三角函数中的恒等变换及正弦定理的应用,突出降幂公式与辅助角公式的应用,属于中档题.
练习册系列答案
相关题目