题目内容
【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100棵种子中的发芽数,得到如下资料:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
温差 | 10 | 11 | 13 | 12 | 8 |
发芽 | 23 | 25 | 30 | 26 | 16 |
该农科所确定的研究方案是:先从这5组数据中选取3组数据求线性回归方程,再用剩下的2组数据进行检验.
(1)若选取的3组数据恰好是连续
天的数据(
表示数据来自互不相邻的三天),求
的分布列及期望:
(2)根据12月2日至4日数据,求出发芽数
关于温差
的线性回归方程
.由所求得线性回归方稻得到的估计数据与剩下的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问所得的线性回归方程是否可靠?
附:参考公式:
.
【答案】(1)见解析(2)见解析
【解析】
(1)
的可能取值有
,用古典概型概率计算公式,计算出分布列,并求出数学期望.(2)利用回归直线方程计算公式计算出回归直线方程,并判断出回归直线方程是否可靠.
解:(1)由题意知,
;
则
,
,
∴;
,
∴
的分布列为:
| 0 | 2 | 3 |
|
|
|
|
数学期望为
;
(2)由题意,计算
,
,![]()
所以![]()
∴
关于
的线性回归方程为
;
当
时,
,且
,
当
时,
,且![]()
∴所求得线性回归方程是可靠的
【题目】为发挥体育在核心素养时代的独特育人价值,越来越多的中学已将某些体育项目纳入到学生的必修课程,甚至关系到是否能拿到毕业证.某中学计划在高一年级开设游泳课程,为了解学生对游泳的兴趣,某数学研究性学习小组随机从该校高一年级学生中抽取了100人进行调查,其中男生60人,且抽取的男生中对游泳有兴趣的占
,而抽取的女生中有15人表示对游泳没有兴趣.
(1)试完成下面的
列联表,并判断能否有
的把握认为“对游泳是否有兴趣与性别有关”?
有兴趣 | 没兴趣 | 合计 | |
男生 | |||
女生 | |||
合计 |
(2)已知在被抽取的女生中有6名高一(1)班的学生,其中3名对游泳有兴趣,现在从这6名学生中随机抽取3人,求至少有2人对游泳有兴趣的概率.
(3)该研究性学习小组在调查中发现,对游泳有兴趣的学生中有部分曾在市级和市级以上游泳比赛中获奖,如下表所示.若从高一(8)班和高一(9)班获奖学生中各随机选取2人进行跟踪调查,记选中的4人中市级以上游泳比赛获奖的人数为
,求随机变量
的分布列及数学期望.
班级 |
|
|
|
|
|
|
|
|
|
|
|
市级比赛 获奖人数 | 2 | 2 | 3 | 3 | 4 | 4 | 3 | 3 | 4 | 2 |
|
市级以上比赛获奖人数 | 2 | 2 | 1 | 0 | 2 | 3 | 3 | 2 | 1 | 2 |
|
| 0.500 | 0.400 | 0.250 | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
| 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
.