题目内容

1.已知f(x)=$\frac{3-{x}^{2}}{1+{x}^{2}}$.
(1)计算f(3),f(4),f($\frac{1}{3}$)及f($\frac{1}{4}$)的值;
(2)由(1)的结果猜想一个普遍的结论,并加以证明;
(3)求值:f(1)+f(2)+…+f(2015)+f($\frac{1}{2}$)+f($\frac{1}{3}$)+…+f($\frac{1}{2015}$)

分析 (1)由已知中函数的解析式,代入可计算f(3),f(4),f($\frac{1}{3}$)及f($\frac{1}{4}$)的值;
(2)由(1)的结果猜想f(x)+f($\frac{1}{x}$)=2,代入化简可得结论;
(3)由(2)得:f(1)+f(2)+…+f(2015)+f($\frac{1}{2}$)+f($\frac{1}{3}$)+…+f($\frac{1}{2015}$)=f(1)+2014×2.

解答 解:(1)∵f(x)=$\frac{3-{x}^{2}}{1+{x}^{2}}$.
∴f(3)=$\frac{-6}{10}$=-$\frac{3}{5}$,
f(4)=$\frac{-13}{17}$,
f($\frac{1}{3}$)=$\frac{\frac{26}{9}}{\frac{10}{9}}$=$\frac{13}{5}$,
f($\frac{1}{4}$)=$\frac{\frac{47}{16}}{\frac{17}{16}}$=$\frac{47}{17}$;
(2)由(1)中f(3)+f($\frac{1}{3}$)=2,f(4)+f($\frac{1}{4}$)=2,
猜想f(x)+f($\frac{1}{x}$)=2,证明如下:
∵f(x)=$\frac{3-{x}^{2}}{1+{x}^{2}}$.
∴f($\frac{1}{x}$)=$\frac{3-\frac{1}{{x}^{2}}}{1+\frac{1}{{x}^{2}}}$=$\frac{3{x}^{2}-1}{1+{x}^{2}}$,
∴f(x)+f($\frac{1}{x}$)=$\frac{3-{x}^{2}}{1+{x}^{2}}$+$\frac{3{x}^{2}-1}{1+{x}^{2}}$=$\frac{2(1+{x}^{2})}{1+{x}^{2}}$=2;
(3)由(2)得:f(1)+f(2)+…+f(2015)+f($\frac{1}{2}$)+f($\frac{1}{3}$)+…+f($\frac{1}{2015}$)=f(1)+2014×2=1+4028=4029

点评 本题考查的知识点是函数的值,归纳推理,其中得到结论f(x)+f($\frac{1}{x}$)=2,是解答的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网