题目内容

精英家教网如图,在平面直角坐标系中,N为圆A:(x+1)2+y2=16上的一动点,点B(1,0),点M是BN中点,点P在线段AN上,且
.
MP
.
BN
=0

(I)求动点P的轨迹方程;
(II)试判断以PB为直径的圆与圆x2+y2=4的位置关系,并说明理由.
分析:(I)由题设,依据椭圆定义知,点P的轨迹是以A,B为焦点的椭圆,依椭圆定义写出标准方程.
(2)求出两圆的圆心距以及两圆的半径,根据两圆的位置关系判断即得,两圆的位置关系有五种,应根据条件判断出应是那一种.
解答:解:(I)由点M是BN中点,又
MP
BN
=0,
可知PM垂直平分BN.所以|PN|=|PB|,又|PA|+|PN|=|AN|,
所以|PA|+|PB|=4.
由椭圆定义知,点P的轨迹是以A,B为焦点的椭圆.
如图焦点在x轴上,
由2a=4,2c=2,可得a2=4,b2=3.
可知动点P的轨迹方程为
x2
4
+
y2
3
=1   (6分)
(II)解:设点P(x0,y0),PB的中点为Q,,则Q(
x0 +1
2
y0
2
),
|PB|=
(x0-1)2+y02
=
x02-2x0+1+3-
3
4
x02
=
1
4
x02-2x0+4
=2-
1
2
x0
即以PB为直径的圆的圆心为Q(
x0 +1
2
y0
2
),,半径为1-
1
4
x0,,
又圆x2+y2=4的圆心为O(0,0),半径r2=2,
又|OQ|=
(
x0+1
2
)
2
+ (
y0
2
)2
=
1
16
x02
1
2
x0+1
=1+
1
4
x0

故|OQ|=r2-r1,即两圆内切.(13分)
点评:考查椭圆的定义法求椭圆的方程以及两圆的位置关系的判断.考查基础知识的题型.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网