题目内容

11.已知数列{an}满足a1=$\frac{1}{2}$,$\frac{{a}_{n}+1}{{a}_{n+1}-1}$-$\frac{1}{{a}_{n}-1}$=0,n∈N*.求数列{an}的通项公式.

分析 由$\frac{{a}_{n}+1}{{a}_{n+1}-1}$-$\frac{1}{{a}_{n}-1}$=0,n∈N*.化为${a}_{n+1}={a}_{n}^{2}$,两边取对数可得:lgan+1=2lgan,再利用等比数列的通项公式、对数的运算性质即可得出.

解答 解:∵$\frac{{a}_{n}+1}{{a}_{n+1}-1}$-$\frac{1}{{a}_{n}-1}$=0,n∈N*
化为${a}_{n+1}={a}_{n}^{2}$,
两边取对数可得:lgan+1=2lgan
∴数列{lgan}是等比数列,首项为$lg\frac{1}{2}$,即-lg2,公比为2.
∴lgan=(-lg2)×2n-1
∴an=${2}^{-{2}^{n-1}}$=$\frac{1}{{2}^{{2}^{n-1}}}$.

点评 本题考查了递推关系的应用、等比数列的通项公式、对数的运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网