题目内容
如图,在平面直角坐标系xOy中,已知曲线C由圆弧C1和圆弧C2相接而成.两相接点M,N均在直线x=5上,圆弧C1的圆心是坐标原点O,半径为r1=13; 圆弧C2过点A(29,0).
(1)求圆弧C2所在圆的方程;
(2)曲线C上是否存在点P,满足PA=
PO?若存在,指出有几个这样的点;若不存在,请说明理由;
(3)已知直线l:x﹣my﹣14=0与曲线C交于E、F两点,当EF=33时,求坐标原点O到直线l的距离.
(1)求圆弧C2所在圆的方程;
(2)曲线C上是否存在点P,满足PA=
(3)已知直线l:x﹣my﹣14=0与曲线C交于E、F两点,当EF=33时,求坐标原点O到直线l的距离.
解:(1)圆弧 C1所在圆的方程为 x2+y2=169,令x=5,解得M(5,12),N(5,﹣12)
则直线AM的方程为 y﹣6=2(x﹣17),令y=0,得圆弧 C2所在圆的圆心为 (14,0),
又圆弧C2 所在圆的半径为29﹣14=15,所以圆弧C2 的方程为(x﹣14)2+y2=225(x≥5)(2)假设存在这样的点P(x,y),则由PA=
PO,得x2+y2+2x﹣29=0
由
,解得x=﹣70 (舍去)
由
,解得 x=0(舍去),
综上知,这样的点P不存在
(3)因为 EF>r2,EF>r1,所以 E,F两点分别在两个圆弧上,
又直线l恒过圆弧 C2的圆心(14,0),所以
解得
,即
则直线AM的方程为 y﹣6=2(x﹣17),令y=0,得圆弧 C2所在圆的圆心为 (14,0),
又圆弧C2 所在圆的半径为29﹣14=15,所以圆弧C2 的方程为(x﹣14)2+y2=225(x≥5)(2)假设存在这样的点P(x,y),则由PA=
由
由
综上知,这样的点P不存在
(3)因为 EF>r2,EF>r1,所以 E,F两点分别在两个圆弧上,
又直线l恒过圆弧 C2的圆心(14,0),所以
解得
练习册系列答案
相关题目
| A、偶函数 | B、奇函数 | C、不是奇函数,也不是偶函数 | D、奇偶性与k有关 |