题目内容
如图,正方形的四个顶点为O(0,0)、A(1,0)、B(1,1)、C(0,1),曲线y=x2经过点B,现将一质点随机投入正方形中,则质点落在图中阴影区域的概率是
- A.

- B.

- C.

- D.

B
分析:本题考查的知识点是几何概型的意义,关键是要找出图中阴影部分的面积,并将其与正方形面积一块代入几何概型的计算公式进行求解.
解答:由已知易得:S正方形=1
S阴影=∫01(x2)dx=
故质点落在图中阴影区域的概率P=
=
故选B
点评:几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据P=
求解.
分析:本题考查的知识点是几何概型的意义,关键是要找出图中阴影部分的面积,并将其与正方形面积一块代入几何概型的计算公式进行求解.
解答:由已知易得:S正方形=1
S阴影=∫01(x2)dx=
故质点落在图中阴影区域的概率P=
故选B
点评:几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据P=
练习册系列答案
相关题目