题目内容
1.若函数f(x)=(x-1)(x+2)(x2+ax+b)的图象关于直线x=0对称,则f(x)的最小值为( )| A. | -$\frac{25}{4}$ | B. | $\frac{7}{4}$ | C. | -$\frac{9}{4}$ | D. | $\frac{41}{4}$ |
分析 根据对称性求出a,b,利用导数研究函数的最值即可.
解答 解:函数f(x)=(x-1)(x+2)(x2+ax+b)的图象关于直线x=0对称,
∴f(-1)=f(1),f(-2)=f(2),
即-2(1-a+b)=0,0=4•(4+2a+b),求得b=-2,a=-1,
∴f(x)=(x-1)(x+2)(x2-x-2 )=x4-5x2+4,
∴f′(x)=4x3-10x=2x(2x2-5)=2x($\sqrt{2}$x-$\sqrt{5}$)•($\sqrt{2}$x+$\sqrt{5}$).
显然,在(-∞,-$\frac{\sqrt{10}}{2}$),(0,$\frac{\sqrt{10}}{2}$)上,f′(x)<0,f(x)为减函数;
在($-\frac{\sqrt{10}}{2}$,0),($\frac{\sqrt{10}}{2}$,+∞)上,f′(x)>0,f(x)为增函数,
故当x=$-\frac{\sqrt{10}}{2}$时,y=$-\frac{9}{4}$,x=$\frac{\sqrt{10}}{2}$时,y=$-\frac{9}{4}$,
函数y取得最小值为$-\frac{9}{4}$,
故选:C.
点评 本题主要考查函数最值的区间,根据对称性求出a,b的值,利用导数研究函数的单调性和函数的最值求法等知识,综合性较强,难度较大.
练习册系列答案
相关题目
9.在△ABC中,角A,B,C所对的边分别为a,b,c,已知2a-b=2ccosB,则角C的大小为( )
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
16.一个圆经过椭圆$\frac{{x}^{2}}{4}$+y2=1的三个顶点,且圆心在x轴的正半轴上,则该圆的标准方程为( )
| A. | (x-$\frac{3}{2}$)2+y2=$\frac{25}{4}$ | B. | (x+$\frac{3}{4}$)2+y2=$\frac{25}{16}$ | C. | (x-$\frac{3}{4}$)2+y2=$\frac{25}{16}$ | D. | (x-$\frac{3}{4}$)2+y2=$\frac{25}{4}$ |
13.已知函数$f(x)=\left\{{\begin{array}{l}{x+1,(x≤1)}\\{-x+1,(x>1)}\end{array}}\right.$,则f[f(2)]=( )
| A. | 3 | B. | 2 | C. | 1 | D. | 0 |
8.直线y=2b与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左支、右支分别交于A、B两点,O为坐标原点,且△AOB为等腰直角三角形,则该双曲线的离心率为( )
| A. | $\frac{\sqrt{5}}{2}$ | B. | $\frac{3}{2}$ | C. | $\frac{\sqrt{30}}{5}$ | D. | $\frac{3\sqrt{5}}{5}$ |