题目内容
已知:f(x)=2
cos2x+sin2x-
+1(x∈R).求:
(Ⅰ)f(x)的最小正周期;
(Ⅱ)f(x)的单调增区间;
(Ⅲ)若x∈[-
,
]时,求f(x)的值域.
| 3 |
| 3 |
(Ⅰ)f(x)的最小正周期;
(Ⅱ)f(x)的单调增区间;
(Ⅲ)若x∈[-
| π |
| 4 |
| π |
| 4 |
f(x)=sin2x+
(2cos2x-1)+1
=sin2x+
cos2x+1
=2sin(2x+
)+1---------------------------------------(4分)
(Ⅰ)函数f(x)的最小正周期为T=
=π------------------(5分)
(Ⅱ)由2kπ-
≤2x+
≤2kπ+
得2kπ-
≤2x≤2kπ+
∴kπ-
≤x≤kπ+
,k∈Z
函数f(x)的单调增区间为[kπ-
,kπ+
],k∈Z-----------------(9分)
(Ⅲ)因为x∈[-
,
],∴2x+
∈[-
,
],
∴sin(2x+
)∈[-
,1],∴f(x)∈[0,3].-----------------------------------(13分)
| 3 |
=sin2x+
| 3 |
=2sin(2x+
| π |
| 3 |
(Ⅰ)函数f(x)的最小正周期为T=
| 2π |
| 2 |
(Ⅱ)由2kπ-
| π |
| 2 |
| π |
| 3 |
| π |
| 2 |
得2kπ-
| 5π |
| 6 |
| π |
| 6 |
∴kπ-
| 5π |
| 12 |
| π |
| 12 |
函数f(x)的单调增区间为[kπ-
| 5π |
| 12 |
| π |
| 12 |
(Ⅲ)因为x∈[-
| π |
| 4 |
| π |
| 4 |
| π |
| 3 |
| π |
| 6 |
| 5π |
| 6 |
∴sin(2x+
| π |
| 3 |
| 1 |
| 2 |
练习册系列答案
相关题目