题目内容
已知双曲线C:(1)求证:
·
=
·
;
(2)若l与双曲线C的左、右两支分别交于点D、E,求双曲线C的离心率e的取值范围.
解析:(1)l:y=-
(x-c),
∴
P(
).
由|
|、|
|、|
|成等比数列得A(
,0),
∴
=(0,-
),
=(
,
),
=(-
,
).
∴
·
=
·
.
(2)![]()
∴b2x2-
(x-c)2=a2b2.
即(b2-
)x2+2
cx-(
+a2b2)=0,
∴Δ>0恒成立.
∴x1·x2=
<0.
∴b4>a4,即b2>a2.
∴c2-a2>a2
e>
.
练习册系列答案
相关题目