题目内容
某算法的程序框图如图所示,其中输入的变量x在1,2,3,…,24这24个整数中等可能随机产生.
![]()
(1)分别求出按程序框图正确编程运行时输出y的值为i的概率Pi(i=1,2,3);
(2)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n次后,统计记录了输出y的值为i(i=1,2,3)的频数,以下是甲、乙所作频数统计表的部分数据.
甲的频数统计表(部分)
![]()
乙的频数统计表(部分)
![]()
当n=2100时,根据表中的数据,分别写出甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率(用分数表示),并判断两位同学中哪一位所编程序符合算法要求的可能性较大;
(3)将按程序框图正确编写的程序运行3次,求输出y的值为2的次数ξ的分布列及数学期望.
(1)变量x是在1,2,3,…,24这24个整中数随机产生的一个数,共有24种可能.
当x从1,3,5,7,9,11,13,15,17,19,21,23这12个数中产生时,输出y的值为1,故P1=
;
当x从2,4,8,10,14,16,20,22这8个数中产生时,输出y的值为2,故P2=
;
当x从6,12,18,24这4个数中产生时,输出y的值为3,故P3=
.
所以,输出y的值为1的概率为
,输出y的值为2的概率为
,输出y的值为3的概率为
.
(2)当n=2100时,甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率如下:
![]()
比较频率趋势与概率,可得乙同学所编程序符合算法要求的可能性大.
(3)随机变量ξ可能的取值为0,1,2,3.
P(ξ=0)=C
×(
)0×(
)3=
,
P(ξ=1)=C
×(
)1×(
)2=
,
P(ξ=2)=C
×(
)2×(
)1=
,
P(ξ=3)=C
×(
)3×(
)0=
,
故ξ的分布列为
| ξ | 0 | 1 | 2 | 3 |
| P |
|
|
|
|
练习册系列答案
相关题目