题目内容

2.函数y=2-|x|-m的图象与x轴有交点时,则(  )
A.-1≤m<0B.0≤m≤1C.0<m≤1D.m≥0

分析 根据指数函数的图象与性质,进行转化与解答即可.

解答 解:y=2-|x|-m=($\frac{1}{2}$)|x|-m,
若函数y=2-|x|-m的图象与x轴有交点,
即y=2-|x|-m=($\frac{1}{2}$)|x|-m=0有解,
即m=($\frac{1}{2}$)|x|有解,
∵0<($\frac{1}{2}$)|x|≤1,
∴0<m≤1,
故选:C.

点评 本题考查了函数与方程的应用问题,根据指数函数的图象与性质是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网