题目内容
在数列{an}中,a1=1,从第二项起,每一项与它前一项的差依次组成首项为2且公比为q(q>0)的等比数列.
(1)当q=1时,证明数列{an}是等差数列;
(2)若q=2,求数列{nan}的前n项和Sn;
(3)令bn=
,若对任意n∈N*,都有bn+1<bn,求q的取值范围.
(1)当q=1时,证明数列{an}是等差数列;
(2)若q=2,求数列{nan}的前n项和Sn;
(3)令bn=
| an+1 | an |
分析:(1)当q=1时,由题意得,an+1-an=2(常数),根据等差数列的定义可作出判断;
(2)当q=2时,an+1-an=2n,利用累加法可求得an,先分组求和,再用错位相减法可求得Sn;
(3)当q=1时,易判断;当q≠1时,an+1-an=2qn-1(q>0),利用累加法可求得an,从而可表示出bn,bn+1,由bn+1<bn可得q的范围;
(2)当q=2时,an+1-an=2n,利用累加法可求得an,先分组求和,再用错位相减法可求得Sn;
(3)当q=1时,易判断;当q≠1时,an+1-an=2qn-1(q>0),利用累加法可求得an,从而可表示出bn,bn+1,由bn+1<bn可得q的范围;
解答:解:(1)当q=1时,由题意得,an+1-an=2(常数),
又a1=1,所以数列{an}是首项为1,公差为2的等差数列;
(2)当q=2时,an+1-an=2n,
则n≥2时,an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)
=1+2+22+23+…+2n-1=2n-1,
当n=1时,a1=1适合上式,
所以an=2n-1(n∈N*),
则Sn=a1+2a2+3a3+…+nan
=(2-1)+2×(22-1)+3×(23-1)+…+n(2n-1)
=2+2×22+3×23+…+n•2n-(1+2+3+…+n),
令T=2+2×22+3×23+…+n•2n,
则2T=22+2×23+…+n•2n+1,
相减得,-T=2+22+23+…+2n-n•2n+1=(1-n)•2n+1-2,
所以T=(n-1)•2n+1+2,
故Sn=(n-1)•2n+1+2-
;
(3)当q=1时,由(1)得an=1+(n-1)•2=2n-1,
bn=
=
=1+
,bn+1=
=1+
,
满足bn+1<bn;
当q≠1时,an+1-an=2qn-1(q>0),
则an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)
=1+2+2q+…+2qn-2=1+2•
=
(n≥2),
n=1时,a1=1适合,
所以an=
,bn=
=
,
∵bn+1<bn,∴
<
,解得0<q<3,且q≠1,
综上,0<q<3.
又a1=1,所以数列{an}是首项为1,公差为2的等差数列;
(2)当q=2时,an+1-an=2n,
则n≥2时,an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)
=1+2+22+23+…+2n-1=2n-1,
当n=1时,a1=1适合上式,
所以an=2n-1(n∈N*),
则Sn=a1+2a2+3a3+…+nan
=(2-1)+2×(22-1)+3×(23-1)+…+n(2n-1)
=2+2×22+3×23+…+n•2n-(1+2+3+…+n),
令T=2+2×22+3×23+…+n•2n,
则2T=22+2×23+…+n•2n+1,
相减得,-T=2+22+23+…+2n-n•2n+1=(1-n)•2n+1-2,
所以T=(n-1)•2n+1+2,
故Sn=(n-1)•2n+1+2-
| n(n+1) |
| 2 |
(3)当q=1时,由(1)得an=1+(n-1)•2=2n-1,
bn=
| an+1 |
| an |
| 2n+1 |
| 2n-1 |
| 2 |
| 2n-1 |
| 2n+3 |
| 2n+1 |
| 2 |
| 2n+1 |
满足bn+1<bn;
当q≠1时,an+1-an=2qn-1(q>0),
则an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)
=1+2+2q+…+2qn-2=1+2•
| 1-qn-1 |
| 1-q |
| 3-q-2qn-1 |
| 1-q |
n=1时,a1=1适合,
所以an=
| 3-q-2qn-1 |
| 1-q |
| an+1 |
| an |
| 3-q-2qn |
| 3-q-2qn-1 |
∵bn+1<bn,∴
| 3-q-2qn+1 |
| 3-q-2qn |
| 3-q-2qn |
| 3-q-2qn-1 |
综上,0<q<3.
点评:本题考查等差数列等比数列的综合应用、考查学生分析问题解决问题的能力,综合性较强,难度较大.
练习册系列答案
相关题目