题目内容
已知p:函数f(x)=x2-2mx+4在[2,+∞)上单调递增;q:关于x的不等式4x2+4(m-2)x+1>0的解集为R.若p∨q为真命题,p∧q为假命题,求m的取值范围.
函数f(x)=x2-2mx+4(m∈R)的对称轴为x=m,
故P为真命题?m≤2;
Q为真命题?△=[4(m-2)]2-4×4×1<0?1<m<3;
又∵P∨Q为真,P∧Q为假,∴P与Q一真一假;
若P真Q假,则
,
解得m≤1;
若P假Q真,则
,解得2<m<3;
综上所述,m的取值范围{m|m≤1或2<m<3}.
故P为真命题?m≤2;
Q为真命题?△=[4(m-2)]2-4×4×1<0?1<m<3;
又∵P∨Q为真,P∧Q为假,∴P与Q一真一假;
若P真Q假,则
|
解得m≤1;
若P假Q真,则
|
综上所述,m的取值范围{m|m≤1或2<m<3}.
练习册系列答案
相关题目
已知p:函数f(x)=x2+mx+1有两个零点,q:?x∈R,4x2+4(m-2)x+1>0.若p∨q为真,p∧q为假,则实数m的取值范围为( )
| A、(-∞,-2)∪[3,+∞) | B、(-∞,-2)∪(1,2]∪[3,+∞) | C、(1,2]∪[3,+∞) | D、(-∞,-2)∪(1,2] |