题目内容
已知双曲线实轴在
轴,且实轴长为2,离心率
, L是过定点
的直线.
(1)求双曲线的标准方程;
(2)判断L能否与双曲线交于
,
两点,且线段
恰好以点
为中点,若存在,求出直线L的方程,若不存,说明理由.
(1)求双曲线的标准方程;
(2)判断L能否与双曲线交于
(1)
(2)不存在过点P的直线L与双曲线有两交点A、B,且线段AB以点P为中点
试题分析:(1)∵2a="2" ,∴a=1,又
∴
∴标准方程为:
(2)①:若过点P的直线斜率不存在,则L的方程为:
此时L与双曲线只有一个交点,不满足题意.
②: 若过点P的直线斜率存在且设为
设
由
显然,要有两个不同的交点,则
要以P为中点,则有
当
所以,不存在过点P的直线L与双曲线有两交点A、B,且线段AB以点P为中点.
点评:每年高考都会考查圆锥曲线问题,此类题目一般运算量较大,主要考查学生的运算求解能力和分析问题、解决问题的能力.
练习册系列答案
相关题目