题目内容

(2011•静海县一模)定义在[-1,1]上的奇函数,若m,n∈[-1,1],m+n≠0时有
f(m)+f(n)
m+n
>0
,则不等式f(x+
1
2
)+f(2x-1)<0
的解集是
{x|0≤x<
1
6
}
{x|0≤x<
1
6
}
分析:由定义在[-1,1]上的奇函数,若m,n∈[-1,1],m+n≠0时有
f(m)+f(n)
m+n
>0
,确定函数单调递增,再结合不等式转化为具体不等式,即可求得解集.
解答:解:∵定义在[-1,1]上的奇函数,若m,n∈[-1,1],m+n≠0时有
f(m)+f(n)
m+n
>0

∴m+n>0时,f(m)+f(n)>0或m+n<0时,f(m)+f(n)<0
∴m>-n时,f(m)>-f(n)=f(-n)或m<-n时,f(m)<-f(n)=f(-n)
∴定义在[-1,1]上的奇函数单调递增
f(x+
1
2
)+f(2x-1)<0

f(x+
1
2
)<-f(2x-1)

f(x+
1
2
)<f(-2x+1)

-1≤x+
1
2
≤1
-1≤-2x+1≤1
x+
1
2
<-2x+1

0≤x<
1
6

∴不等式的解集为{x|0≤x<
1
6
}.
点评:本题考查函数单调性与奇偶性的结合,考查解不等式,确定函数的单调性是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网