题目内容

数列{an}中a1=1,且an+1=an+
1
n(n+1)

①写出数列的前5项;
②归纳出数列的通项公式;
③用数学归纳法证明归纳出的结论.
①∵a1=1,an+1=an+
1
n(n+1)

∴a2=1+
1
2
=
3
2

a3=a2+
1
2×3
=
3
2
+
1
2×3
=
10
6
=
5
3

a4=a3+
1
3×4
=
5
3
+
1
3×4
=
7
4

a5=a4+
1
4×5
=
7
4
+
1
4×5
=
9
5

②由①归纳知,an=
2n-1
n

③证明:(1)当n=1时,a1=1,等式成立;
(2)假设n=k时,ak=
2k-1
k

则当n=k+1时,
ak+1=ak+
1
k(k+1)

=
2k-1
k
+
1
k(k+1)

=
1
k
(2k-1+
1
k+1

=
1
k
(2k-1)(k+1)+1
k+1

=
1
k
k(2k+1)
k+1

=
2k+1
k+1

=
2(k+1)-1
k+1

即n=k+1时,等式也成立.
综上所述,对任意n∈N*,an=
2n-1
n
均成立.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网