题目内容
数列{an}中a1=1,且an+1=an+
①写出数列的前5项;
②归纳出数列的通项公式;
③用数学归纳法证明归纳出的结论.
| 1 |
| n(n+1) |
①写出数列的前5项;
②归纳出数列的通项公式;
③用数学归纳法证明归纳出的结论.
①∵a1=1,an+1=an+
,
∴a2=1+
=
;
a3=a2+
=
+
=
=
;
a4=a3+
=
+
=
;
a5=a4+
=
+
=
;
②由①归纳知,an=
;
③证明:(1)当n=1时,a1=1,等式成立;
(2)假设n=k时,ak=
,
则当n=k+1时,
ak+1=ak+
=
+
=
(2k-1+
)
=
•
=
•
=
=
.
即n=k+1时,等式也成立.
综上所述,对任意n∈N*,an=
均成立.
| 1 |
| n(n+1) |
∴a2=1+
| 1 |
| 2 |
| 3 |
| 2 |
a3=a2+
| 1 |
| 2×3 |
| 3 |
| 2 |
| 1 |
| 2×3 |
| 10 |
| 6 |
| 5 |
| 3 |
a4=a3+
| 1 |
| 3×4 |
| 5 |
| 3 |
| 1 |
| 3×4 |
| 7 |
| 4 |
a5=a4+
| 1 |
| 4×5 |
| 7 |
| 4 |
| 1 |
| 4×5 |
| 9 |
| 5 |
②由①归纳知,an=
| 2n-1 |
| n |
③证明:(1)当n=1时,a1=1,等式成立;
(2)假设n=k时,ak=
| 2k-1 |
| k |
则当n=k+1时,
ak+1=ak+
| 1 |
| k(k+1) |
=
| 2k-1 |
| k |
| 1 |
| k(k+1) |
=
| 1 |
| k |
| 1 |
| k+1 |
=
| 1 |
| k |
| (2k-1)(k+1)+1 |
| k+1 |
=
| 1 |
| k |
| k(2k+1) |
| k+1 |
=
| 2k+1 |
| k+1 |
=
| 2(k+1)-1 |
| k+1 |
即n=k+1时,等式也成立.
综上所述,对任意n∈N*,an=
| 2n-1 |
| n |
练习册系列答案
相关题目