题目内容
数列{an} 中a1=| 1 |
| 2 |
| 1 |
| 2 |
( I ) 求数列{an}的通项公式an以及前n项和Sn;
(Ⅱ)记 bn=
| n+1 |
| 2an |
(Ⅲ)试确定Tn与
| 5n |
| 4n+2 |
分析:(I)由s n+1-sn=(
)n+1得an+1=(
)n+1(n∈N*),由此能求出数列{an}的通项公式an以及前n项和Sn.
(Ⅱ)由bn=
=
=
,知Tn=
+
+
++
,再由错位相减法能求出数列{bn} 的前n项和Tn.
(Ⅲ)由Tn-
=
-
-
=
,知确定Tn与
的大小关系等价于比较2n与2n+1的大小,经分类讨论知n=1,2时Tn<
,n=3时Tn>
.
| 1 |
| 2 |
| 1 |
| 2 |
(Ⅱ)由bn=
| n+1 |
| 2an |
| n+1 |
| 2×2n |
| n+1 |
| 2n+1 |
| 2 |
| 22 |
| 3 |
| 23 |
| 4 |
| 24 |
| n+1 |
| 2n+1 |
(Ⅲ)由Tn-
| 5n |
| 4n+2 |
| 3 |
| 2 |
| n+3 |
| 2n+1 |
| 5n |
| 4n+2 |
| (n+3)(2n-2n-1) |
| 2n+1(2n+1) |
| 5n |
| 4n+2 |
| 5n |
| 4n+2 |
| 5n |
| 4n+2 |
解答:解:(I)s n+1-sn=(
)n+1得an+1=(
)n+1(n∈N*)(1分)
又a1=
,故an=(
)n(n∈N*)(2分)
从而sn=
=1-(
)n(4分)
(Ⅱ)由(I)bn=
=
=
Tn=
+
+
++
,(5分)
Tn=
+
+
++
+
(6分)
两式相减,得
Tn=
+
+
+
++
-
(7分)
=
+
-
=
-
-
(8分)
所以Tn=
-
-
=
-
(9分),
(Ⅲ)Tn-
=
-
-
=
于是确定Tn与
的大小关系等价于比较2n与2n+1的大小(10分)
n=1时2<2+1,n=2时22<2×2+1,n=3时23>2×3+1(11分)
令g(x)=2x-2x-1,g′(x)=2xln2-2,x>2时g(x)为增函数,(12分)
所以n≥3时g(n)≥g(3)=1>0,2n≥2n+1,(13分)
综上所述n=1,2时Tn<
n=3时Tn>
(14分)
| 1 |
| 2 |
| 1 |
| 2 |
又a1=
| 1 |
| 2 |
| 1 |
| 2 |
从而sn=
| ||||
1-
|
| 1 |
| 2 |
(Ⅱ)由(I)bn=
| n+1 |
| 2an |
| n+1 |
| 2×2n |
| n+1 |
| 2n+1 |
| 2 |
| 22 |
| 3 |
| 23 |
| 4 |
| 24 |
| n+1 |
| 2n+1 |
| 1 |
| 2 |
| 2 |
| 23 |
| 3 |
| 24 |
| 4 |
| 25 |
| n |
| 2n+1 |
| n+1 |
| 2n+2 |
两式相减,得
| 1 |
| 2 |
| 2 |
| 22 |
| 1 |
| 23 |
| 1 |
| 24 |
| 1 |
| 25 |
| 1 |
| 2n+1 |
| n+1 |
| 2n+2 |
=
| 1 |
| 2 |
| ||||
1-
|
| n+1 |
| 2n+2 |
| 3 |
| 4 |
| 1 |
| 2n+1 |
| n+1 |
| 2n+2 |
所以Tn=
| 3 |
| 2 |
| 1 |
| 2n |
| n+1 |
| 2n+1 |
| 3 |
| 2 |
| n+3 |
| 2n+1 |
(Ⅲ)Tn-
| 5n |
| 4n+2 |
| 3 |
| 2 |
| n+3 |
| 2n+1 |
| 5n |
| 4n+2 |
| (n+3)(2n-2n-1) |
| 2n+1(2n+1) |
于是确定Tn与
| 5n |
| 4n+2 |
n=1时2<2+1,n=2时22<2×2+1,n=3时23>2×3+1(11分)
令g(x)=2x-2x-1,g′(x)=2xln2-2,x>2时g(x)为增函数,(12分)
所以n≥3时g(n)≥g(3)=1>0,2n≥2n+1,(13分)
综上所述n=1,2时Tn<
| 5n |
| 4n+2 |
| 5n |
| 4n+2 |
点评:本题考查数列的通项公式、前n项和的求法和数列与不等式的综合应用,解题时要认真审题,注意错位相关法的合理运用,恰当地进行等价转化.
练习册系列答案
相关题目