题目内容
9.设Sn是等比数列{an}的前n项和,公比q>0,则Sn+1an与Snan+1的大小关系是( )| A. | Sn+1an>Snan+1 | B. | Sn+1an<Snan+1 | C. | Sn+1an≥Snan+1 | D. | Sn+1an≤Snan+1 |
分析 对q分类讨论,利用求和公式作差即可得出.
解答 解:当q=1时,Sn+1an=(n+1)${a}_{1}^{2}$,Snan+1=$n{a}_{1}^{2}$
Sn+1an-Snan+1=${a}_{1}^{2}$>0.
当q>0且q≠1时,Sn+1an-Snan+1=$\frac{{a}_{1}(1-{q}^{n+1})•{a}_{1}{q}^{n-1}}{1-q}$-$\frac{{a}_{1}(1-{q}^{n})•{a}_{1}{q}^{n}}{1-q}$=$\frac{{a}_{1}^{2}{q}^{n-1}(1-q)}{1-q}$=${a}_{1}^{2}{q}^{n-1}$>0.
∴Sn+1an>Snan+1.
综上可得:Sn+1an>Snan+1.
故选:A.
点评 本题考查了等比数列的通项公式与求和公式、作差法、分类讨论方法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
20.下表是降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据,根据上表提供的数据,求出y关于x的线性回归方程y=0.75x+0.35,那么表中m=3.9.
| X | 3 | 4 | 5 | 6 |
| y | 2.5 | m | 4 | 4.5 |
4.设集合A={-2,-1,0,1,2},B={x|x2+2x<0},则A∩(∁RB)=( )
| A. | {1,2} | B. | {0,1,2} | C. | {-2,1,2} | D. | {-2,0,1,2} |
14.下列函数中,与函数$f(x)=\frac{1}{{\root{3}{x}}}$的定义域相同的函数是( )
| A. | y(x)=x•ex | B. | $y=\frac{sinx}{x}$ | C. | $y=\frac{x}{sinx}$ | D. | $y=\frac{lnx}{x}$ |
1.已知变量x、y满足约束条件$\left\{\begin{array}{l}x+y-3≥0\\ 3x-y-3≥0\\ x≤a\end{array}\right.$若$\frac{y}{x+1}$的最大值为2,则$\frac{y}{x+1}$的最小值为( )
| A. | $\frac{1}{6}$ | B. | $-\frac{3}{5}$ | C. | $-\frac{1}{2}$ | D. | $-\frac{1}{3}$ |