题目内容

在下面的四个选项中,不是函数f(x)=x2-1的单调减区间.


  1. A.
    (-∞,-2)
  2. B.
    (-2,-1)
  3. C.
    (-1,1)
  4. D.
    (-∞,0)
C
分析:由已知中函数的解析式,我们可以分析出函数的单调性,进而判断四个答案中的区间与函数单调递减区间之间的包含关系,即可得到结论.
解答:函数f(x)=x2-1的图象是开口方向朝上,
以y轴为对称轴的抛物线
故其在区间(-∞,0]上为减函数,在区间[0,+∞)上为增函数;
∵(-∞,-2)?(-∞,0],∴(-∞,-2)是函数f(x)=x2-1的单调减区间.
∵(-2,-1)?(-∞,0],∴(-2,-1)是函数f(x)=x2-1的单调减区间.
∵(-1,1)?(-∞,0],∴(-1,1)不是函数f(x)=x2-1的单调减区间.
∵(-∞,0)?(-∞,0],∴(-∞,0)是函数f(x)=x2-1的单调减区间.
故选C
点评:本题考查的知识点是二次函数的性质,熟练掌握二次函数的图象和性质是解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网