题目内容
| lim |
| n→∞ |
| ||
| n3+1 |
| 1 |
| 6 |
| 1 |
| 6 |
分析:先求出组合数,分子、分母同除以n3,即可求出极限.
解答:解:由题意,
=
=
故答案为
| lim |
| n→∞ |
| ||
| n3+1 |
| lim |
| n→∞ |
| n3 -3n2+2n |
| 6(n3+1) |
| 1 |
| 6 |
故答案为
| 1 |
| 6 |
点评:本题以数列为载体,考查数列的极限,属于基础题.
练习册系列答案
相关题目
等差数列{an}的前n项和为Sn,已知
=-
(a1<0),则( )
| lim |
| n→∞ |
| sn |
| n2 |
| a1 |
| 9 |
| A、n=5时,Sn有最大值 |
| B、n=6时,Sn有最大值 |
| C、n=5时,Sn有最小值 |
| D、n=6时,Sn有最小值 |