题目内容

11.已知$\overrightarrow{a}$、$\overrightarrow{b}$均为单位向量,它们的夹角为$\frac{π}{3}$,那么|$\overrightarrow{a}$+3$\overrightarrow{b}$|等于$\sqrt{13}$.

分析 由题意可得,∴$\overrightarrow{a}•\overrightarrow{b}$=$\frac{1}{2}$,再根据|$\overrightarrow{a}$+3$\overrightarrow{b}$|=$\sqrt{{(\overrightarrow{a}+3\overrightarrow{b})}^{2}}$=$\sqrt{{\overrightarrow{a}}^{2}+6\overrightarrow{a}•\overrightarrow{b}+{9\overrightarrow{b}}^{2}}$,计算求的结果.

解答 解:∵$\overrightarrow{a}$、$\overrightarrow{b}$均为单位向量,它们的夹角为$\frac{π}{3}$,∴$\overrightarrow{a}•\overrightarrow{b}$=1×1×cos$\frac{π}{3}$=$\frac{1}{2}$,
∴|$\overrightarrow{a}$+3$\overrightarrow{b}$|=$\sqrt{{(\overrightarrow{a}+3\overrightarrow{b})}^{2}}$=$\sqrt{{\overrightarrow{a}}^{2}+6\overrightarrow{a}•\overrightarrow{b}+{9\overrightarrow{b}}^{2}}$=$\sqrt{1+3+9}$=$\sqrt{13}$,
故答案为:$\sqrt{13}$.

点评 本题主要考查两个向量的数量积的定义,求向量的模的方法,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网